Unstructured Mesh Handling for
Extreme-Scale Computing

Timothy J. Tautges

Computational Scientist

Mathematics & Computer Science Division
Argonne National Laboratory

@ ERERGY



Outline

= MOAB

Overview: mesh & simulation
2-slide overview

Data model

Basic mesh access

Sets & tags

Parallel mesh access

iMeshP

= CGM/Lasso

CGM 1-slide overview
Lasso 1-slide overview

= Usage: MOAB-native tools

= Usage: mbpart / Zoltan

= Usage: mbcoupler

_— y
A B

C N

.
A

A\
° “\% : Argonne Training Program in Extreme-Scale Computing




v

Introduction

= PDE-based simulation discretizes PDEs over a discrete representation of the spatial
and often time domain, and solves for specific discrete model(s)

Continuous domain Discrete domain FEA
(mesh)

(geometry)

-

= Sometimes geometric details of the spatial domain are important, sometimes not
— MPP-enabled resolution should resolve geometric features (where possible & useful?)

= Depending on the geometric features & resolution requirements, generating the
mesh can be either trivial

= Mesh, and data on the mesh, are involved in simulation at the front (generation),
middle (simulation), and back (viz & data analysis)

Argonne Training Program in Extreme-Scale Computing




Mesh-Oriented datABase (MOAB)

= Library for representing, manipulating structured, unstructured mesh models
= Supported mesh types:
— FE zoo (vertices, edges, tri, quad, tet, pyramid, wedge, knife, hex)
— Polygons/polyhedra
— Structured mesh
= Implemented in C++, but uses array-based storage model
— Efficient in both memory and, for set-based access, in time
= Mesh I/O from/to various formats
— HDF5 (custom), vtk, CCMIO (Star CD/CCM+), Abaqus, CGM, Exodus
= Main parts:
— Core representation
— Tool classes (skinner, kdtree, OBBtree, ParallelComm, ...)
— Tools (mbsize, mbconvert, mbzoltan, mbcoupler, ...)

= Parallel model supports typical element-based decompositions, with typical mesh-based
functions (shared interface, ghost exchange, ownership queries)

= Runs on 32k+ cores

o Argonne Training Program in Extreme-Scale Computing 4



Parallel Mesh Model "

= Definitions:

— Element-based partition:
decomposition of mesh over processors such that
each element assigned to exactly one proc/part,
with vertices shared between parts

v5

— Shared entity: an entity represented on
multiple procs

— (Part) interface entity: entity shared by multiple parts
(vertices, edges, faces in a 3D mesh & element-based partition)

— Owned entity, owner: each mesh entity owned by exactly one proc
— Ghost entity: shared non-owned entity (sometimes referred to as “halo”)
= “Degree” of parallel-ness depends on application requirements, and can be adjusted as
needed during calculation
— Duplicated model on every proc
— Domain-decomposed
— Shared vertices, non-vertices
— 1 or more layer of ghost elements



MOAB Parallel Mesh Model

= Parallel model based on element-based partition
— Each element assigned to exactly one part, with entities optionally shared between parts/procs
— Arbitrary number of layers of ghost elements

= Supported parallel mesh constructs:
— For each shared entity, every sharing proc knows all other sharing procs & handles on those

— Sharing data stored as either single int/handle (shared with 1 other proc) or mult sharing
procs/handles

— Ghost/owned status also stored
— Stored in 1-byte ‘pstatus’ bitmask tag
= Parallel model usually initialized by loading from some decomposition in file
— Can be any subset structure that’s a “covering” (each entity in exactly 1 subset)
— Material set, geometric volume, or Zoltan-generated partitioning

= Single-file parallel read/write using parallel HDF5
= All parallel functionality usually accessed through ParallelComm class

6
° Argonne Training Program in Extreme-Scale Computing



MOAB Data Model

= 4 basic types of data:
— Entities (FE zoo, polygons, polyhedra)
— Sets (collections of entities & sets, parent/child links)
— Tags (annotation of data on other 3)
— Interface (OOP, owns data)

= Tags used for both fine-grained and coarse-grained data

— Fine grained: vertex-based temperature

— Coarse-grained: provenance of mesh = ”Gjeometrlc mode| topology

= Sets + tags used for a variety of mesh groupings Ble Help ‘Window Displey

Actor

Sheet3
Sheet4
Sheet 5
Sheeté
Sheet?7
Sheet 8
SheetQ
& Volume 1
p-Surface 1
m- Surface 10
i Curve 7
Curve 8
. . b+ Surface 11
Design velocities o Surface 12

[F{¥{¥{¥}{¥]{¥]{¥]

Parallel Partitions

7
a Argonne Training Program in Extreme-Scale Computing



MOAB Entity Storage

EntityHandle: ltypel id Range:
* Fundamental unit of \_YJ\ ~ J « Class for storing lists of handles
access in MOAB * Near constant-size for near-contiguous

4-bit  28-or 60-bit subranges of handles

Bitmask of type, id
* Methods for efficient Booleans on lists

EntitySequence:

« Represent used portions of handle space
« Have pointer to SequenceData

. Have start and end handle values

« Arranged in binary tree by start handle

Cache most -
~_ recently
e accessed
T | | EntitySequence

Typically one
I e e I I e EntitySequence for an
............... entire SequenceData

| VAR 1l .

= Connectivity - Coords —
Dense tag 1 Dense tag 2
Dense tag 2 Dense tag 4
Dense tag 3
SequenceData:
Linked list of all SequenceDatas . Represent allocated portions of handle space
for a single entity type . Have start and end handle
. Coordinates or Connectivity, + Dense Tag Data o

o



MOAB Mechanics ()

= MOAB implemented in C++, but internally uses array-based storage
— More memory efficient for simulation, with functionality appropriate for all uses

= Data accessed through a MOAB instance
— Multiple instances can co-exist, but single instance is not thread-safe
— Parallel instances independent except through parallel mesh constructs mentioned earlier

= MOAB supports a variety of platforms
— Linux, MacOS, IBM BG/x, Cray
— Windows maybe coming soon
= MOARB configure/build process using autoconf OR cmake
— Makefile “snippets” built to simplify using it in application makefiles (examples later)
— Can build with no dependencies, but you should probably build with NetCDF and HDF5
— For the purposes of this training course, MOAB already built on Vesta
— You can also build a local copy on your machine, and in many cases it’s easier to learn that way
http://trac.mcs.anl.gov/projects/ITAPS/MOAB/wiki

° Argonne Training Program in Extreme-Scale Computing



HelloMOAB: Basic Mesh Access

http:// www.mcs.anl.gov/~fathom/moab-docs/html|/HelloMOAB 8cpp-example.html

= |nterface instantiation using moab::Core constructor
— Normally, all MOAB access should be through moab:: namespace, not used here for brevity
= Mesh can be loaded from file (Interface::load_file) or created in-place
(Interface::create_vertex, Interface::create_element)
— MOAB source comes with various mesh files, in MeshFiles/unittest/...
= Lists usually handed through interface as either Range or std::vector<EntityHandle>

\ 10
° - Argonne Training Program in Extreme-Scale Computing


http://www.mcs.anl.gov/~fathom/moab-docs/html/HelloMOAB_8cpp-example.html

GetEntities: Basic Mesh Access

http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities 8cpp-example.html

= MOAB provides functions for getting handle type, id (type_from_handle,
id_from_handle)
— These are bitmask functions, you could implement your own in C/C++
— EntityType enumeration: MBVERTEX, MBEDGE, ... (use Doxygen to find definition)

— Ids usually assigned in sequence, starting with 1 (note, 0 is never a valid id, except for handle O,
which refers to the “root set” or instance)

= Range provides APl very similar to std::vector
— begin(), end(), rbegin(), etc.
— Range::range_inserter type for handing to std::copy
= moab::CN class for Canonical Numbering
— Tells how vertices, edges, faces are numbered in local element
— Provides functions for e.g. getting string name, getting # edges in an element, etc.

‘ 11
o Argonne Training Program in Extreme-Scale Computing


http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

N
Intermediate-Dimension Entities (“aentities”)

= Explicit representation of edges and edges/faces in 2D, 3D meshes is optional
— Sometimes useful (e.g. adaptive refinement), sometimes not
— For tetrahedral meshes, can increase memory cost by ~4-6x, hex meshes slightly lower

= “Real” meshes usually come with aentities necessary for defining boundary condition
groupings, but no other ones

= |In MOAB:

— You can request creation of aentities by requesting them from adjacency calls with
“create_if missing” argument = true

— Calling get_entities_by_xxx will return only those explicitly represented

= To force creation of interior edges/faces for whole mesh:
— Get all vertices using get_entities_by dimension with dim = 0 (use Range version)
— Call get_adjacencies with to_dimension = 1 or 2 and create_if _missing = true

12
o Argonne Training Program in Extreme-Scale Computing



MOAB get_adjacencies Allows Booleans on Results List

vl v3 v5 v/
®

v2 v4
‘ . v6 . v8 .

= get _adjacencies(from=v1-v4; to_dim=2; op=INTERSECT;to list=<empty>) = q1
= get adjacencies(from=v3; to_dim=2; op=UNION;to_list=<empty>) =ql, q2
= get _adjacencies(from=v3-v4; to_dim=2; op=INTERSECT; to_list=<q2,q3>) = q2

= Useful for reducing lines of code for mesh query & list manipulation

= |nterface::Range also defines Boolean operations, for both code reduction and time
efficiency

13
o Argonne Training Program in Extreme-Scale Computing



Sets & Tags

v

The combination of sets and tags is one of the most
powerful abstractions in MOAB

— | have yet to see a construct useful in mesh-based simulation that

cannot be efficiently represented using sets and tags Parallel Partitions

Tags are useful as both fine-grained (dense) and coarse-grained (sparse) data
— Sparse tags in MOAB are stored as (handle, value) tuples
— Dense tags are allocated/stored as (valuel, value2, ...) for sequences of entity handles

— Pointer to tag memory can be retrieved through API, useful for unstructured array-based
simulations

A set can have parent and child sets, and this is different from contains relations

— Can define general directed graphs of sets

Some more about sets:
— The whole mesh is specified through the MOAB API as set handle zero (0)
— Eliminates a whole set of functions for accessing entities for whole mesh vs. subset
— MOARB has 2 types of sets:
e List: order is preserved, entities can appear > 1 time (like std::vector)
e Set: order not preserved (ordered by EntityHandle), each handle can occur only once (like std::set)
— By default, MOAB does not make entities as being in sets, so can have “stale” sets

e Can specify “tracking” flag for set at creation time, treats inclusion as entity-set adjacency

e Tracking efficient memory-wise, but not necessarily time-wise; better to adjust on whole-set basis

14
Argonne Training Program in Extreme-Scale Computing



Sets & Tags (cont)

MOAB AP/ does not bind specific set purposes
— No specific APl support for boundary conditions, parallel parts, etc.

MOAB defines conventions for conventional uses of sets
— MBTagConventions.h, MBParallelConventions.h define various tag names, properties
— MATERIAL_SET, DIRICHLET_SET, NEUMANN_SET, NAME, PARALLEL_PARTITION, ...

Sets & tags useful for defining “metadata” (data about the data)

— MOAB documentation includes “I/O and Metadata Storage Conventions” document that
describes some common uses
e http://www.mcs.anl.gov/~fathom/moab-docs/html/md-contents.html

e This document describes where data from specific file readers gets put in the MOAB data model
For some meshes (cubit), sets can be used to represent original geometric model
topology
— Not enough time to describe here; check metadata document for details

‘ 15
o Argonne Training Program in Extreme-Scale Computing



SetsNTags: Working with Sets and Tags

http://www.mcs.anl.gov/~fathom/moab-docs/html/SetsNTags 8cpp-example.html

= Interface::tag_get handle used for both accessing current tags and creating new ones

= 2 types of tag-based access:
— Get entities by type, tag: most useful for sparse tags
— Get tag values on specific entity(ies): most useful for dense tags

= For materials and boundary conditions, more memory-efficient to define grouping using
sets, and material/BC data using tags on set

= Most modern meshing tools work this way too

‘ 16
o Argonne Training Program in Extreme-Scale Computing


http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

MOAB Parallel Mesh "

= Recall:

v5

Element-based partition:

decomposition of mesh over processors such that
each element assigned to exactly one proc/part,
with vertices shared between parts

Shared entity: an entity represented on
multiple procs

(Part) interface entity: entity shared by multiple parts
(vertices, edges, faces in a 3D mesh & element-based partition)

Owned entity, owner: each mesh entity owned by exactly one proc
Ghost entity: shared non-owned entity (sometimes referred to as “halo”)

= For lots of parallel mesh usage, don’t need to think about parallel at all

Serial mesh APl works the same way

= |n MOAB, parallel mesh constructs are stored using sets and tags

Could access most of the parallel mesh data using same serial API + parallel tag conventions

= MOAB also has a ParallelComm class

Provides convenience functions for e.g. getting shared entities, ghost entities
Parallel functionality, e.g. resolving shared and ghost entities, exchange/reduce tags

17



MOAB Parallel Mesh (cont)

= Most common way of initializing parallel mesh is by reading a file, but details are
important
— Specifying partition type (replicated, by material, geometric volume, partitioning tool)
— Post-read operations (resolve shared entities, exchange ghost cells)
= Specified in MOAB using file options string
— See User’s Guide, section 5, for list of options and common usages
= MOAB implements parallel I/O using single file approach
— Different from many other tools, which use 1FPP or other approaches
— Scalability / workflow simplicity often at odds

= File format also important
— MOAB uses HDF5 for native format, that file type used to store partitioned file

18
° Argonne Training Program in Extreme-Scale Computing



MOAB Parallel 1/0 Svong Scalng ot tme)

“#-64m tet (read)
<1 64m tet (write)
@ 32m hex (read)

= Data taken on Intrepid (IBM BG/P) e e

= Read/write for 32m hex, 64m tet elems
— Nowhere near ideal I/0 bandwidth
— Absolute time tolerable in most cases

— Drastic tet time improvement after
reordering by partition foroc
e Fewer small fragments of HDF5 datasets

Strong Scaling (32m hexes)

= Read/resolve/ghost times
— Read times about constant
— Resolve, ghost time scaling close to linear

time (sec)

#proc

e —
A_ 19




MOAB Parallel I/0: Weak Scaling

140

120

3

seconds

s 8 &

Weak Scaling (2k elements/proc)

-*tet read
= hex read

2000 4000 6000 8000 10000
#proc

12000

14000

16000

20




N
HelloParMOAB: Parallel Mesh Initilization/Access

http:// www.mcs.anl.gov/~fathom/moab-docs/html/HelloParMOAB 8cpp-example.html

= Can initialize MOAB using MPI_COMM_WORLD or other communicator
— Can also use multiple ParallelComm objects, on different communicators (but sharing may not work right

currently...)
= Use ParallelComm::get_shared_entities to get shared entities by dimension and other
sharing proc (with defaults for all dimensions/other procs)
= PSTATUS_ xxx enumeration/bitmask defines various parallel-relevant states
— PSTATUS _SHARED, MULTISHARED, INTERFACE, GHOST
= Use ParallelComm::filter_pstatus to filter range based on status & Boolean (NOT/AND)
= Resolving shared, ghosted entities can be specified at file read time (using option) or as
explicit operation through ParallelComm

= MOAB does not restrict or change the way you can use MPI for other things
— i.e. does not define e.g. MOAB_MPI_Comm datatype or MOAB_MPI_Reduce function

21
o Argonne Training Program in Extreme-Scale Computing


http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

Putting It Together: Parallel Lloyd Relaxation

http:// www.mcs.anl.gov/~fathom/moab-docs/html/LloydRelaxation 8cpp-example.html

SN NI e
VZAVAY,

t it += 1 |

Parallel:
aralle it~ 12

a Argonne Training Program in Extreme-Scale Computing


http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

Putting It Together: Parallel Lloyd Relaxation (cont)

http://www.mcs.anl.gov/~fathom/moab-docs/html/LloydRelaxation 8cpp-example.html

= |nitialization of mesh with shared entities resolved, one layer of ghosts exchanged
= Use centroid tag for intermediate storage of new vertex positions
= CN class cpp variables to dimension some lists

» When getting/setting tag values on multiple entities, make use of &stdvec[0] to get
pointer to memory
— STL guarantees this is valid
— stl::vector dynamically-sized, useful for mesh-based codes

= Judicious choice of default value for tag eliminates need to initialize fixed tag for unfixed

vertices
- SAAGRN DK NAYA\VAVAVAVAVAVAVAYY
" Results: VAR
Sisenvadl i RAER R

AN AN Ay Ay
POSERLRARE

AVAN

<N

AVAV

JAVAS

|

JAVAN
SVAVA
JANANAN

:
g

w‘
<5

T

=
/)

<

AN
Vo
ga

AN
25
AV

VAV
4
‘fw

.
N7
R

Vi

avi

VAVAN/

AV,
KA

7
<1

A
RO H L]

SN
\ﬁi

[N/
AVAN

N
|

%
5

VAVAV

<P

RO
CORRORASKS

VAVAVAVANANANVAVAL

N/
00

/\

23
@ Argonne Training Program in Extreme-Scale Computing


http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

iMesh, iMeshP Interfaces

= The ITAPS project defined a set of
common interfaces (APIs) for iGeom/CGM
mesh, geometry, and relations

= C-based interface, but designed to be callable directly from Fortran and C++

— Good portability, performance

. . appl.f77 app2.f90 app3.CC app4.c app4.py
— Maintenance easier

— iMeshP for parallel data, constructs \u\A / d}
|Mesh (C) A

— Python also supported, through PyTAPS

= MOAB uses iMesh, iMeshP to support implA.CC impIB.c |mpIC 77
Fortran-based applications

= Primary differences between MOAB, iMesh(P):
— MOAB parallel model defined entirely through sets+tags; iMeshP uses “Partition”, “Part”

— IniMeshP, when you have multiple Parts per process, ghosting across parts implies duplicate
entities in same iMeshP instance

— List handling through iMesh/iMeshP somewhat more cumbersome due to lack of
Range, std::vector data structures

e Mitigated a bit using ISO_C_BINDING for F90+
= Not enough time to describe fully here; see MOAB User’s Guide, section 7

.\ 24



Mesh-Based Tools Packaged With MOAB

= Several tools are packaged with MOAB and built by default

= mbsize
— Used to read mesh & list numbers of entities of various types
-Il option (list long): lists everything in mesh; -g and —m list geometry and material/BC sets, resp.
-f option: lists formats read and written by MOAB

= mbconvert: use to convert between file formats
— Multiple -0 <read_option> -0 <write_option> can be used to test reading/writing in parallel
— Use to generate vtk files for use by Vislt/ParaView

= mbpart (in mbzoltan subdirectory): partition a mesh for parallel access
— (requires Zoltan library from Sandia)

— Implements various partitioners (use —h to list), but Recursive Intertial Bisection seems to be
most reliable & relatively fast

= mbtagprop: convert tags between set- and entity-based ata
= mbskin: generate & save the skin of a mesh

25
o Argonne Training Program in Extreme-Scale Computing



Advanced Topics

= Direct access to MOAB storage
— Use to obtain direct pointers to: tags (sparse & dense), connectivity, coordinates, adjacencies
— Allows near-native speed for array-based applications
— Uses iterator approach to allow for multiple “chunks” in handle/array space
— See examples DirectAccessNoHoles, DirectAccessWithHoles, DirectAccessNoHolesF90 for usage

= Mesh searching
— MOAB implements various tree types that enable local/parallel mesh searching
— Optionally with finite element shape functions for locating points in elements

— See AdaptiveKDTree class, tools/mbcoupler in source

\ 26
° - Argonne Training Program in Extreme-Scale Computing



MOAB-Based Solution Transfer
= Each physics type on independent mesh

= Distributed independently

OR
= Both meshes in same MOAB instance
7M Hexes

= Works for 2D, 3D in parallel for interpolation-based transfer
(+ global or subset conservation)

= Work on tracer transport will provide basis for element-based

28M Tets conservation too

= MOAB currently being integrated into
ESMF to support online weight
regeneration too



Common Geometry Module (CGM)

= Library for query & modification of BREP CAD-based geometric models
= Supports various modeling engines

— Open.CASCADE (open-source)

— ACIS (commercial)

— CUBIT-ACIS (available for research purposes)
= Designed to represent geometric models as they are represented in CUBIT
= Basic model import & query

— ACIS .sat, OCC .brep, STEP, IGES

— Query # vertices/edges/faces/volumes, edge/face closest pt, face normal, etc.
= Model construction

— 3D/2D primitives, spline fitting, etc.

— Booleans, transforms, sweeping, lofting, etc.

— Not a parametric modeler like e.g. SolidWorks
= Advanced features

— Facet-based modeling

— “Virtual” topology (small feature removal)

— Decomposition for (hex) meshing

28



Common Geometry Module (CGM)
Open.CASCADE (OCC) port

= Previously, CGM only supported commercial modeling engines
— ACIS, SolidWorks, Pro/Engineer, Catia CAA
= Qver the past couple years, implemented CGM port to Open.CASCADE, the only
general-purpose, open-source geometric modeling engine
= Most CGM functionality supported
— Geometry construction, booleans, transforms
— Webcut, imprinting (useful for hex & multi-material meshing)
— Virtual topology
= Not supported:
— Regularize after unite
— Some history and undo operations recently added to CGM
— Somewhat slower than ACIS-based CGM

29



Lasso Relations Tool

= For some applications, need to relate mesh to geometry
— Adaptive mesh refinement
— Smooth surface-based boundary conditions

= Separation of geometry, mesh in independent components means we need a
higher-level component that depends on those

= Lasso: tool for recovering, querying, setting geometry-mesh relations

= Prerequisite for querying: restore geometry, mesh with enough information to
recover matching

= Lasso matches:
— iGeom: Entity dimension — iMesh: EntitySet GEOM_DIMENSION tag value, and
— iGeom: Entity GLOBAL_ID tag value —iMesh: EntitySet GLOBAL ID tag value

= These matching criteria inherently implementation-dependent, though eventually
can hopefully specify generically in terms of ITAPS data model

= Current implementation works with meshes generated by CUBIT, MeshKit

30



Summary

= Mesh tends to be involved in front-end, back-end, of simulation process, and everywhere
in between

= Mesh-related things tend to be ideal mix between math, CS, computational science (IMO)
= MOAB & friends are easy to use, powerful tools for working with mesh-related data

= For more information:
— International Meshing Roundtable series of conferences, http://www.imr.sandia.gov
— S. Cheng, T. Dey, J. Shewchuk, “Delaunay Mesh Generation”, Chapman & Hall/CRC Press, 2012
— H. Edelsbrunner, “Geometry and Topology for Mesh Generation”, Cambridge Univ. Press, 2006
— http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB
— http://collab.mcs.anl.gov/display/moab

— tautges@mcs.anl.gov
= MANY jobs and research topics available in this area!

“.:‘V . 31
° " Argonne Training Program in Extreme-Scale Computing


http://www.imr.sandia.gov/
http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB
http://collab.mcs.anl.gov/display/moab
mailto:tautges@mcs.anl.gov

